# Friis Transmission Equation
$P_\gamma=P_tG_tG_\gamma\left(\frac{\lambda}{4\pi d_0}\right)^2\left(\frac{d_0}{d}\right)^nL$
$G_t\rightarrow$ [antenna gain](antenna%20gain.md)
$d_0 \rightarrow$ measurement distance constant.
$L\rightarrow$ distance independent losses
$\left(\frac{\lambda}{4\pi d_0}\right)^2$
or rewritten:
$\frac{P_\gamma}{P_t}=\frac{\alpha}{d^n}$
where $\alpha = G_tG_\gamma\left(\frac{\lambda}{4\pi d_0}\right)^2d_0^nL$ and $\alpha \ll 1$
[^1]
## Other formulations
$P_r=\frac{P_tG_tG_rc^2}{16\pi^2d^2f^2} \ [Watt]$
### Remarks
The loss is a function of the carrier frequency - higher frequency means faster attenuation with distance.
Usually frequency is given (fixed).
Whole thing is a function of distance.

# References
[^1]: [UNSW Lecture 1 on Wireless Fading Channel Modeling and Estimation](../../03%20-%20University/Thesis/src/UNSW%20Lecture%201%20on%20Wireless%20Fading%20Channel%20Modeling%20and%20Estimation.mp4)